
JPL Publication 88-42 

Efficient Detection and 
Signal Parameter Estimation With 
Applications to High Dynamic 
GPS Receivers 
R. Kumar 

(bASB-CB- 1848t 1) H?FICIE&!I C L P E C l I C B  A I C  189-2C362 
5 I G Y A L  E A E A d E l E B  E S l I I E A l I C A  119h 
A & P L J C A I I C b 2  I C  tlG5 L I b A l J C  6PS 6ECEIVEES 
( j e t  EroFulsicl: Lat.) 40 F CSCL 17B Unclas 

G31.32 019EE56 

i 

December 15,1988 

Prepared for 

U.S. Air Force Systems Command 
Armament Division 
Through an agreement with 

National Aeronautics and 
Space Administration 
bv 
Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

I 



~~~ 

JPL Publication 88-42 

Efficient Detection and 
Signal Parameter Estimation With 
Applications to High Dynamic 
GPS Receivers 
R. Kumar 

December 15.1988 

Prepared for 

U.S. Air Force Systems Command 
Armament Division 

National Aeronautics and 
Space Administration 
bv 
Jet Propulsion Laboratory 

Through an agreement with 

California Institute of Technology 
Pasadena, California 



The research described in this publication was carried out by the Jet Propulsion 
Laboratory, California Institute of Technology, under contract with the National 
Aeronautics and Space Administration, in part sponsored by the United States Air 
Force Systems Command, through an agreement with the National Aeronautics 
and Space Administration, under Task Order RE-182, Amendment 452. 

Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not constitute or imply its 
endorsement by the United States Government or the Jet Propulsion Laboratory, 
California Institute of Technology. 



ABSTRACT 

This publication presents a novel technique for simultaneously detecting data and estimating the pa- 

rameters of a received carrier signal phase modulated by unknown data and experiencing very high Doppler, 

Doppler rate, etc. Such a situation arises, for example, in the case of Global Positioning Systems (GPS) 

where the signal parameters are directly related to the position, velocity and acceleration of the GPS receiver. 

The proposed scheme is based upon first estimating the received signal local (data dependent) parameters 

over two consecutive bit periods, followed by the detection of a possible jump in these parameters. The 

presence of the detected jump signifies a data transition which is then removed from the received signal. 

This effectively demodulated signal is then processed to  provide the estimates of global (data independent) 

parameters of the signal related to the position, velocity, etc. of the receiver. 

One of the key features of the proposed algorithm is the introduction of two different schemes which 

can provide an improvement of up to  3 dB over the conventional implementation of Kalman filter as applied 

to  phase and frequency estimation, under low to medium signal-to-noise ratio conditions. One scheme is 

based upon reprocessing (cycling) the measurements over an optimally selected interval while the alternative 

scheme proposes an adaptive Hilbert transform technique. The overall complexity of the proposed algorithm 

is about three times the complexity of a single third order Kalman filter. 
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111 



~ ~~ 

1. 

2. 

3. 

4. 

5. 

6. 

CONTENTS 

INTRODUCTION 

THE SIGNAL MODEL 

Optimum Solutions 

SIMULTANEOUS ESTIMATION AND DETECTION SCHEME 

ESTIMATION ALGORITHM (RECURSION IN SAMPLES) 

Improved Kalman Filter 
Modified Phase Locked Loop with up to 3 dB Improvement 

SIMULATIONS 

CONCLUSIONS 

REFERENCES 

APPENDIX 

Figures 

1. 
2. 

3. 
4a. 

4b. 

4c. 

5a. 

5b. 

6a. 

6b. 

7a. 

7b. 

Illustrative Received Signal Waveform 
Schematic Diagram of the Proposed Estimation/ 
Detection Scheme 
Modified Phase-Locked Loop with up to  3 dB Improvement 
Errors in Estimates of Frequency at  Bit Intervals 
(Acceleration 50 g) 
Errors in Estimates of Frequency Derivative at 
Bit Intervals (Acceleration 50 g) 
Carrier Phase Estimation Error at the Start of 
Bit Periods (Acceleration 50g) 
Errors in Estimates of Frequency at Bit Intervals with 
Data Detection (Acceleration 50g) 
Errors in Estimates of F'requency Derivative at 
Bit Intervals with Data Detection (Acceleration 50 g) 
Errors in Estimates 
(Acceleration 50g) 
Errors in Estimates 
(Acceleration 50g) 
Errors in Estimates 
(Acceleration 1OOg) 
Errors in Estimates 

of Frequency at Bit Intervals 

of Frequency Derivative 

of Frequency at Bit Intervals 

of Frequency Derivative at 
Bit Intervals (Acceleration-100g) 

7 

11 

11 
13 

15 

18 

19 

21 

23 

24 
25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

V 
m C E D l l J G  PAGE N A N K  NOT FILMED 



1. INTRODUCTION 

The problem of estimating the parameters of a received quasi-sinusoidal signal in the presence of noise 

has received considerable attention in the literature [l-121. However, for the case when the received carrier 

is modulated by unknown data and simultaneously experiences considerably high Doppler and Doppler rate, 

the research reported in the published literature is somewhat limited. This situation arises, for example, in 

the case of Global Positioning Systems (GPS) receivers exhibiting very high dynamics [7, 121. 

In a previous publication [7], an estimator structure based on the maximum likelihood estimation (MLE) 

of code delay and Doppler frequency over a single data bit period has been proposed and analyzed for the 

GPS application. The “pseudo” estimates over different bit intervals are combined by a Kalman filter to 

provide tracking of Doppler frequency. By limiting the primary (MLE) estimation period to less than one 

data bit period, the problem of detecting the data bits is bypassed. However, perhaps due to such a limitation 

and also due to  the high frequency rate involved (not explicitly estimated by the MLE), a threshold of about 

30 dB-Hz in terms of the received carrier power to  noise power spectral density ratio (PINO) was obtained. 

Due to the lack of knowledge of data bit, phase estimation is not feasible in this scheme. 

In terms of GPS applications, the problem of data modulation can be overcome by establishing a parallel 

(non-dynamic) link between the GPS satellites and a control ground receiver which also simultaneously 

receives the frequency translated version of the GPS receiver signals [13]. The data demodulation and 

estimation is then performed at the ground receiver. Once the data modulation is removed from the GPS 

receiver signal, then the problem reduces to simply estimating the phase, frequency, etc. of an unmodulated 

r-f carrier. This latter problem of course, has been extensively studied in the literature. See for example 

[9] for a very efficient method for simultaneous estimation of frequency and its derivative, and [12] for some 

similar techniques, including a third and fourth order Kalman filter, as applied to the GPS receiver problem. 

In this publication, we address the original (and more difficult) problem of estimating the signal pa- 

rameters from a data modulated sinusoidal carrier and propose a novel simultaneous estimation-detection 

scheme whose performance is very close to the estimation schemes proposed for the case of the unmodulated 

carrier. In fact, for the case of high dynamics under consideration, there is virtually no loss in terms of the 

required (PINO) due to data modulation. Apart from the fact that in GPS applications this does away with 
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the necessity of having a parallel direct satellite to ground receiver communication link, the proposed scheme 

is very important in many other similar situations including (modulated) signal acquisition from NASA deep 

space probes undergoing high dynamics, where such parallel links may not be feasible. 

In the literature [14, 151 there are several techniques of data detection. If the signal waveform is known 

precisely (and does not change from bit to  bit) then data can be detected coherently by using matched 

filters or correlation receivers, irrespective of the actual waveform. If the waveform (carrier) has a constant 

known frequency, then either a coherent or differentially coherent detection may be employed depending 

upon whether or not the phase of the carrier is known. In a decision-directed version of these techniques, 

the carrier phase and/or frequency are estimated by a phase-locked loop technique and the data detector 

becomes part of the loop. It is clear that these techniques may not be feasible under low signal-to-noise 

ratio and the high dynamics considered here, in that the frequency may not be even nearly constant over the 

detection period and under such low loop SNR conditions it may not be possible to acquire the lock with 

data modulation present. 

In an alternative solution as in the Costas loop [15], the data detection problem is bypassed by a mul- 

tiplicative technique. However, such a loop also suffers in terms of loss of the SNR due to the multiplicative 

noise term which can be excessive for high loop filter bandwidths required and low received SNR. 

It is thus apparent that schemes which incorporate data detection in a loop which in turn is made 

dependent upon the acquisition and tracking of the loop may not be desirable under such high dynamics 

conditions since the loop may not acquire to start with (and may lose lock during tracking). Therefore, 

in this publication we propose and investigate techniques where data can be detected even under open 

loop condition. The fact that this information can subsequently be used to obtain an overall closed-loop 

configuration is only of secondary importance. 

The proposed scheme is based upon estimation of the received signal “local” (data dependent) param- 

eters over two consecutive bit periods, followed by a detection of a possible jump in these parameters. The 

presence of the detected jump signifies a data bit transition which is removed from the received signal. This 

effectively demodulated signal is then processed to  provide the estimates of “global” (data independent) 

parameters of the signal which also provide a prediction for the “local” parameters over subsequent bit 
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periods. 

The estimation algorithm for both the “local” and “global” parameters estimation is an improved 

version of the Kalman filter. For “local” parameter estimation it is necessary to use an algorithm capable of 

estimating both the phase and frequency (data is phase modulated). However, for the “global” estimation 

algorithm it is not necessary to estimate the phase and thus the Kalman filter may be substituted by the 

frequency estimation algorithm of [9], resulting in a marginal reduction of the required PINO. 

One of the key features of the proposed algorithm is the introduction of two different schemes which 

can provide an improvement of up to 3 dB over the Kalman filter (and phase or frequency locked loops) 

as applied to  phase and frequency estimation under low signal-to-noise ratio (SNR) conditions. Both of 

these schemes are based upon the recognition of two available error signals with nearly independent noise. 

In conventional implementations, one of these error signals is simply ignored. Here we propose that by 

reprocessing the observations over an optimally selected period, one can exploit the other error signal as 

well. It may be emphasized that the improvement here is not due to better linearization as in iterated Kalman 

filter (where the improvement increases with the iteration interval) but rather due to the fact that if the 

reprocessing interval is optimal, the two sets of measurements are nearly independent, resulting in nearly 3 

dB improvement of performance under low SNR. In an alternative scheme, relevant to classical phase-locked 

loop structures, we propose an adaptive Hilbert transform technique resulting in similar improvements. 

In section 2 we present the signal model with the optimal solution, followed by the proposed simultaneous 

estimation and detection scheme in section 3. Section 4 presents the estimation algorithm in some details 

with the two proposed modifications. In section 5 we give simulation results where the algorithm is applied to 

the GPS receiver parameter estimation problem. The last section of the publication contains some concluding 

remarks. 
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2. THE SIGNAL MODEL 

Consider the problem of simultaneously estimating the high dynamic phase process 0 ( t )  and detecting 

the data modulation from the measurements y ( t ) , z ( t )  in (1) made in the presence of zero mean additive 

white Gaussian noise ni ( t ) ,  nq( t ) .  

y ( t )  =ASin(0(t) + *D( t ) )  + vj(t) 

~ ( t )  =ACa(B( t )+  *D( t ) )+  v q ( t )  ; 0 5 t 5 To 

In (1) D(2) is a binary digital waveform taking possible values 0 or 1. Assume that over a sufficiently small 

estimation period, 

e(t) = eo + + ro t2  + bot3 ( 2 )  

for some unknown parameter vector $0 = [eo wo yo bo]'.  Thus { y ( t ) , z ( t ) }  represent the in-phase and 

quadrature components of a received signal s ( t )  and wo is the offset between the frequencies fc of the carrier 

reference signal r( t )  and the received signal representing the Doppler, while the Doppler rate is equal to 270 

etc. In case of positioning systems, the phase derivative 0(t) is related to the physical velocity trajectory 

v d ( t )  of the receiver as 

f c  e@) z 2*--2)4t) 
C 

(3) 

where c is the velocity of light. Similar normalization of the second and third derivatives of 6(t) yields the 

acceleration and jerk (second derivative of velocity) respectively of the physical trajectory. 

Sampling the inphase and quadrature signal waveforms y ( t )  and z ( t )  at  a rate of l/Tb one obtains 

y(k) = ASin(0(k) + * D ( k ) )  + vi(k) 

z ( k )  = ACos(O(k) + r D ( k ) )  + vP(k) ; D(k)  = 0 , l  

The signal y(t) (and similarly ~ ( 2 ) )  may be depicted as in Figure 1. 

ODtimum Solutions 

It is desired to obtain the estimate of parameter vector +O and detect data bits d l ,  . . . , d, on the basis 

of measurements Y ( M ) ,  Z ( M )  Y {y(k), z ( k ) ; k  = 1,. . . , M }  where M=Nn, n is the number of received 
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digits and N is the number of samples/bit. The optimum solution can be obtained by maximizing the 

a-posteriori probability density function of + o , d l , .  . . , d,, conditioned upon Y ( N ) ,  Z ( N )  and denoted by 

p(+o,dl,. . . , d , / Y ( M ) ,  Z ( M ) ) .  Such a maximization can be achieved by first computing the 2” possible 

A conditional probability density functions pi = rgx p(+o lY(N) ,  Z ( N ) ;  Si) at their respective optimum 

point &. In the expression for p i ,  Si denotes the ith possible binary sequence Si,, . . . ,Si, for the received 

digits. This is followed by selecting the maximum out of these 2” values. Thus if pm = max(p1,. . . ,pzn) for 

some m between 1 and 2”, then &pt = 4, and d l , .  . . , dn = S,. 

To evaluate the ith probability p i ,  obtain the set of modified measurements y ( M ) , z ( M )  defined as 

J( k) = Sij Y( k) 

T ( k ) = s i j % ( k )  ; ( j - l ) N + l _ < L < j N  ; j = 1 ,  ..., n 
(5) 

and then computing pi = maxp(+o(y(M),z(m)). 
$0 

When there is no a-priori knowledge about $0, one may instead maximize p(P(M),z(M)l&) with 

respect to 40. In case of Gaussian additive noise considered here, such a maximization is equivalent to 

minimization of the sum of prediction error squares, i.e., one simply minimizes 

M 
~ { [ ~ ( k )  - ASin(6(k))I2 + [T(k) - ACos(6(k))l2) 
k = l  

with respect to 40 where 6 ( k )  = &[l t k  t z  t i ]  with t k  = kT,. The approximate minimization of (6) can be 

achieved by a recursive algorithm like the Kalman filter. 

In this publication we present a computationally simpler suboptimal version of the optimal estimator 

given above. Such a simplification is achieved by considering the case of n=l  first and observing that one 

could estimate a modified parameter vector +o = $0 + l d l r  with I’ = [l 0 0 01, directly without an explicit - A  A 

knowledge of the data bit d l .  The estimate of To in turn permits the computation of the total phase 

@(k) = d l r  + O(k)  at the boundary of first bit (t = Tb-). A similar computation with the measurements in 

the second bit interval permits the computation of total phase d 2 r +  O ( k )  at t = Tb+. Now it is obvious (see 

- 

figure 1) that O ( k )  does not have any discontinuity at t = Tb and thus any difference among the above two 

estimates can result either due to data transition or noise. Thus, if the signal-to-noise ratio is adequate, it 

is then possible to detect such a data transition with “small” probability of error. In this case the transition 
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can be eliminated from the measurements during the second bit period and the estimation of To can be 

updated on the basis of the additional measurements. 

Assuming that the first bit is zero (without any restriction on the algorithm) the above decision-directed 

method effectively removes data modulation and provides at time k, the following modified measurement. 

B(k - N )  2 ASin(O(k - N )  + r D ( k  - N )  + r 6 ( k  - N ) )  f v i (k  - N )  

F(k - N )  = ACos(O(k - N )  + rD(k  - N )  + rb(k - N ) )  f vq(k  - N )  

where N represents the delay equal to the number of samples in one bit period introduced in the physical 

realization and 6 ( k )  is an estimate of D(k) .  If 6 ( k )  = D ( k )  then of course, equation (7) reduces to 

(7) 
A 

From (8) one can easily estimate W O ,  y0,60 etc. for example, by an extended Kalman filter. The effect of any 

decision errors made in the detection of DO) would be to introduce errors in the parameter estimates. But 

intuitively, such an effect would be most significant upon Bo, a parameter which is not significant in itself 

under the present application. 
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3. SIMULTANEOUS ESTIMATION AND DETECTION SCHEME 

In this section, we present a novel combined estimation/detection scheme which simultaneously detects 

data bits and obtains estimates of signal parameters such as carrier phase, frequency, etc. (related to  receiver 

dynamics) in a sequential manner. The proposed scheme is recursive in both the number of data bits and 

the observations within any one data bit. The procedure described here effectively involves two mutually 

coupled estimation processes. In one of these estimation processes, we obtain the estimates of the signal 

parameters (phase, frequency, etc.) in the vicinity of possible data transitions (symbol boundaries) on the 

basis of measurements obtained within the current data bit. These estimates, which are dependent upon 

both the data and the receiver dynamics, and termed “local” parameter estimates, are then used to  decide 

whether or not a data transition has actually occurred. On the basis of this information, data modulation 

is removed from the received signal and the modified observations are reprocessed to  update the “global” 

parameters (dependent only upon the receiver dynamics and independent of data modulation) by taking into 

account the additional observations during the current “detected” bit. 

A block diagram of the proposed estimation/detection scheme is depicted in Figure 2. It may be 

noted that a closed-loop configuration involving the feedback correction signal to the reference numerically 

controlled oscillator (NCO) is required to keep the signal frequency 6(t) at  the phase detector output within 

the bandwidth of the filter (accumulator) following the phase detector. Such a correction at  a rate equal 

to  a submultiple of bit rate consists of simply transferring the estimate of frequency (and possibly that 

of frequency derivative as well) to  the NCO. In the following, we first describe in some detail the overall 

estimation/detection scheme without specific details of the estimation algorithm itself. In this paper we apply 

a modified Kalman filter but other appropriate recursive parameter estimation algorithms may be adapted 

to the proposed framework. The proposed estimation/detection scheme involves the following recursive (in 

number of data bits) steps. 

Recursion in Data Bits 

SteD 1: Let N be the total number of samples in any one bit period (assumed to be an integer) with the first 

sample appearing at time t = O+ and the Nth sample occurring at time Tb - Tb where Tb denotes the bit 

period. With a recursive algorithm to be described subsequently, we obtain the estimates of the parameter 
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A - A  
vector To = [e, wo 70 60IT at time t = O+ on the basis of first N measurements. Here 00 = 00 + ?rdl with dl 

denoting the first data bit with its value 1 or 0, i.e. 

SteD 2:  In order to detect bit transitions we need to obtain estimates of “local” parameters at the bit 

boundaries. Thus to detect the possible transition at the end of first data bit period, it is required to obtain 

estimates of the parameters a t  t = Tb- and 1 = Tb+. Noting that the parameters at t = Tb- are related to 

the corresponding parameters a t  t = O+ by the following linear transformation, 

denotes the total phase at t = O+. 

where s(Tb) denotes the matrix appearing in (9), I’ 

the first component of the argument. 

[l 0 0 01 and modulo 2% operation is performed on 

However, since we are interested in optimum modulo 2?r estimate of the phase g(Tb-), a nonlinear 

function of To, the modulo 277 version of ?L(Tb-) appearing in (10) and denoted a Fp(Tb-) ki not optimal 

even if To is optimum. Also in the subsequent kth bit period, the predicted estimate of the phase could 

differ by ?r due to data modulation if dk # do. Thus we simply set ep(Tb-) equal to  its predicted value plus 

?r/2 or it may simply be set to zero. 

An optimum modulo 2n estimate of T(Tb-) is obtained by reprocessing the first N measurements but 

with their time and phase reference measured with respect to  t = Tb- as follows. With the initial estimate 

given by Fp(Tb-), apply the recursive estimation algorithm to the set of following measurements to  obtain 

an optimum filtered estimate of T(Tb-) denoted TF(Tb-). 



I 

We note that in ( l l ) ,  8(Tb-) denotes modulo 27r phase at  1 = Tb- and thus OL, l ( j )  may differ from 

O ( N  + j )  by an integer multiple of 21. The fact that the error covariance of TF(Tb-) may differ from the 

error covariance of Tp(Tb-) is apparent from the fact that the Cramer Rao error bounds are dependent on 

the time reference [l]. 

Step 3: assuming that all the parameters except 3 cannot change instantaneously, the predicted estimates 

of parameters at t = Tb+ (just after the possible data transition) are given by 

With the initial estimate given by Tp(Tb+) in (12), apply the recursive estimation algorithm to the set of 

following measurements { g ( k ) , T ( k )  ; k = 1 , 2 , .  . . , N }  to  obtain an optimum filtered estimate of $(Tb+) 

denoted $~(q+) .  Under low SNR conditions #p(Tb+) in (12) may be set to zero. 

In equations (11, 13) suffix L (Local) on 0 refers to the fact that the cumulative phase O is measured 

with reference to  time Tb- and Tb+ respectively. For computational simplicity, &F(Tb- )  etC. in (12) may 

be replaced by the corresponding components of Tp(Tb-) of (10) and step 2, 3 may thus be performed 

concurrently. 

Step 4: We note that irrespective of the dynamics involved (excluding the physically impossible case of 

instantaneous position change), g(Tb+) can differ from 8(Tb-) only if a data transition occurs at t = Tb, i.e. 

d2 # d l .  In case of no transition we have that d2 = dl and g(Tb+) = g(Tb-). Thus we apply the following 

simple decision rule for data detection. 

# d l  otherwise 

A detection error thus occurs only if the phase estimation error is greater than 7r/2. 
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SteD 5: In this step, the estimate of the global parameter vector $0 (parameters at t = O+) is updated on the 

basis of modified measurements { y ~ ( k ) ,  z ~ ( k )  k = N ,  . . . ,2N - l}, where y ~ ( k )  = y(k) if dz = d l̂ and 

y ~ ( k )  = -y(k) otherwise, with similar expression for z ~ ( k ) .  Thus if there is no detection error made, one 

would obtain the same estimate for $0 as for the case of no data modulation. Any error in data detection 

simply appears as additional state noise in the algorithm. The significance of this step is that this yields 

(near optimum) estimation of the absolute phase go(0+/2Tb-), as against modulo 2~ phase, and from this 

absolute phase estimate &,,(t/2T*-) (carrier phase in the absence of any data modulation) at any time t 

can be determined by simple linear transformation S(t )  defined in (9). Equivalently using a dynamic model 

for phase [l l] ,  one could directly estimate total phase e(k) at any time instance k. 

Whereas by necessity, g(Tb+) is based upon only the measurements {y(k), z ( k )  

; 

; N 5 k 5 2 N  - 1)  

(previous measurements influence this only indirectly via &(Ti-) etc.); the phase estimate i>,~(t/2Tb-) is 

obtained on the basis of complete set of measurements up to instance 2N - 1 and refers to the carrier phase 

in the absence of data modulation (assuming that the first bit is 0). This more accurate phase estimate can 

then be used to obtain a more accurate (coherent) detection of data if a delay on data detection but not on 

parameter estimation can be introduced. 

Ster, 6: Steps 2-4 are now repeated for detection of subsequent data transitions and step 5 updates the 

estimate of $0 on the basis of additional measurements during consecutive bit intervals. Note that in the 

first step of the algorithm, one would have 

- 
'$(kTb-) = S(kTb)$(O+/kTb-) ; k = 1 , 2 .  

The generalization of other steps of the algorithm is obvious. 
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4. ESTIMATION ALGOFLITHM (RECURSION IN SAMPLES) 

A 
We now consider the problem of estimating the parameter vector $0 = [eo wo yo SO]’ in the signal model 

(1-4) when the data modulation has been removed as described above. For this purpose, the signal model is 

written in the following state space form. 

z ( k  + 1) = 3 z ( k )  + w(k)  

Z ( k )  = h ( z ( k ) ,  k) + u(k) 

e(,) = J ’ ( k ) z ( k )  , J ‘ ( k )  = [l t k  t i  t 3  

z y k )  = [e, wo yo a,] ; ip = I 
(15) 

where I denotes the identity matrix and {~(k)}, {w(k ) }  are assumed to be zero mean white Gaussian noise 

processes with covariances given by 

E[w(k)w’(k)] = Q , E[u(k)v’(k)] = R = (16) 

Model (15) is similar to those of [ll, 161 except that here we treat the model state as the unknown param- 

eter vector $0 rather than the time-varying phase and frequency process. The two models are completely 

equivalent if there is no data modulation or in case of modulation, no detection errors are made. As shown 

in the appendix, the extended Kalman filter equations for the above model are given by 

2 ( k  + l / k  + 1) = @ i ( k / k )  + K ( k  + 1) E (k + 1) (17) 

where the gain K ( k  + 1) does not depend upon the parameter estimates. The updates for the gain K ( k  + 1) 

and the prediction error E (k + 1) are given by equations (A10, A12) of the appendix. 

Improved Kalman Filter: 

In the following, we propose a novel (and simple) modification to the Kalman filter, which results in 

about 3 dB improvement in terms of signal-to-noise ratio. It is observed that the prediction error E (k) in 

(17) may be written as 
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E (k) = ASin(0(k)) + nz(k)  

where 

Now, we define a related error term q(k) as 

which may be rewritten as 
~ ( k )  = ACos(e(k)) + n g ( k )  

(19) 
n g ( k )  = uj(k)SinG(k) + u9(k)cose(k) 

From the observation that {ui(k),u,(k),w(k)} forms an independent sequence and the fact that 6 ( k )  is 

measurable with respect to the noise samples up to time k - 1, it follows that 

Thus nz(k)  and n g ( k )  are independent. Strictly speaking { n z ( k ) }  or { n g ( k ) }  is not an independent sequence 

as nz(k)  is correlated to nz(k-  1) via 0 ( k ) .  However, such a correlation is negligible* and is generally ignored 

in Phase Locked Loop Theory [ l S ] .  

Thus we observe that an independent observation is available and exploit it in the following manner to 

improve the estimate of z ( k ) .  

Among several possible methods, we select an iterative method wherein the measurements {y(k), z ( k ) }  

are divided into groups of M measurements with M equal to N or an integer submultiple of N.  Each of 

these groups is then processed by the estimation algorithm 2 or more times. Considering the first such 

group with k between 1 and M, then under low signal-bnoise ratio (SNR) condition, the estimate of total 

* Essentially 8 ( k )  is negligible compared to 0 ( k )  and thus 0 ( k )  in the expressions for nz(k) ,  nQ(k)  may 

be replaced by 8 ( k )  which is a process independent of the additive noise process { v i ( k ) , u 9 ( k ) }  
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phase 00) in the first iteration denoted by e l ( k )  would be considerably different from its estimate @(k) 

in the second iteration, i.e. 1@(k) - S(k)l << @l(k) - Q(k)I .  It is easily seen that the corresponding 

noise samples appearing in the prediction error term in (18) and denoted by ni(k), n; (k )  respectively have 

a correlation coefficient equal to Cos(Q2(k) - 6 ' ( k ) ) .  Thus if the difference &(k) - &(k) is approximately 

equal to  */2, the corresponding noise samples are nearly independent and a signal processing gain of about 

3 dB is realized. This effectively corresponds to using a prediction error ~ ( k )  given by (19), in the second 

recursion. For a given signal-t-noise ratio, the value of M can be optimized to  achieve maximum possible 

improvement. Note however, that no such gain can be realized under high SNR case as under such conditions 

&(k) z S(k)  E @(k). These observations have been verified by computer simulations. It may be stated 

that improvement here is not due to  iterative linearization of the nonlinearity as is usually the case but 

rather due to  very specific properties of the noise n,(k). 

Remarks: 1. As is usually the case, K(k+ 1) in (15) being independent of measurements may be precomputed 

and can possibly be replaced by its steady-state value. 

2. Here we have worked with a complex baseband signal. However, similar ideas can be applied to scalar 

sampling case [3, 111 where a Phase-Locked Loop structure results. 

Modified Phase Locked LOOD with UP to 3 dB Improvement 

In this section we also provide an explicit implementation in terms of a phase-locked loop (PLL), see [3, 

111 for details. Such an implementation is shown in Figure 3, where to keep consistency with the notation 

of previous sections, we represent both the received bandpass signal s(k + 1) and the NCO (numerically 

controlled oscillator) signal in terms of the same frequency w,. Any difference can of course be absorbed in 

W O ,  a part of the state vector. All other symbols in the figure are consistent with the rest of the publication 

except that z(k) and CP would correspond to their use in [ll]; i.e. z(k) here consists of instantaneous phase, 

frequency, etc. rather than the values of these at  some fixed time instance. Note also that the bandpass 

noise T(k + 1) of Figure 3 has the following quadrature representation in terms of v i (k )  and vq(k)  of (3). 

I The loop filter may be designed either on the basis of steady-state solution of the Riccati equation (Kalman 
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Gain) or via any other design procedure applicable to PLL filter design. 

To see the possible 3 dB improvement due to Hilbert transform, simply note that if 8 ( ( k )  is equal to 

kT,G for some frequency error ij with ~ ( k )  given by 

~ ( k )  = ACos(ijkT,) + n g ( k )  

then its Hilbert transform is simply 

Tj(k) = ASin(G,kT,) + i i g (k )  

= ASin(0(k)) + i i g ( k )  

Moreover, the independence of n,(k) and n g ( k )  also implies the independence of ny(k )  and i i g ( k )  due to 

Gaussian assumption on noise and the fact that the Hilbert transform is a deterministic linear transform. 

The fact that ij is actually time-varying is taken into account by making the Hilbert transform adaptive, i.e. 

in time-domain we replace the Hilbert transform by its following adaptive discrete time version; 

where X is some adaptation constant with 0 < X < 1. For X = 1, (23) corresponds to  the discrete time 

version of the standard continuous-time convolution definition (24). 

7 

The parameter X is selected so that over an interval T8/(l - A), the frequency ij remains nearly constant. 

Thus the selection of X depends upon the input signal dynamics, loop bandwidth, etc. It may be noted 

that the implementation of Hilbert transform by necessity requires a delay in the loop and thus the actual 

realized gain may be less than 3 dB depending upon the amount of such a delay. 
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5.  SIMULATIONS 

In the following we present simulation results obtained when the algorithm is applied to the signal 

parameters acquisition and tracking for a high dynamic GPS receiver [7, 121. For the purposes of this 

simulation we assume that the pseudo random code has been removed from the received signal and symbol 

timing has been acquired. Such a signal is then quadrature sampled at  a rate that is an integer multiple N of 

the bit rate 1/Ta, the latter assumed to  be 50 bps. For the purposes of simulations, we consider two different 

sampling rates of 750 and 1000 samples/sec corresponding to the value of N equal to 15 and 20 samples/bit 

respectively. The simulation results are presented for different values of PINO, where P denotes the received 

carrier power and N O  is the one-sided power spectral density of the receiver bandpass noise. The parameters 

of equivalent baseband model (4) are then related as 

with -& (dB) = % (dB) + 17. For the purposes of simulations we use normalized parameters as discussed 

in [8, 91. The performance of the algorithm is completely invariant to such a simple transformation, but in 

implementation such a normalization can be very convenient as it keeps the condition number of the error 

covariance matrix small, and thus the algorithm would be more robust under finite precision arithmetic. 

The normalized sampling period T*N is selected to be .02 s with corresponding normalized parameters 

W O N ,  YON and 6 0 ~  expressed in units of rad/sec. The parameters of interest i.e., the receiver velocity V d  in 

m/s and its derivatives in appropriate units can be expressed in terms of the above normalized parameters 

via 

where c is the velocity of light and fc is the received carrier nominal frequency equal to 1.575 GHz. Figures 

4-7 plot both the estimates of the normalized parameters as well as those of the receiver physical parameters 

u d ,  a and J defined in (26). We consider first the acquisition problem where in the initial parameter vector 
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&, is some unknown constant. The modification to include the time-varying case is subsequently considered. 

For the simulation results presented below, a time-varying exponential data weighting factor given by 

(A7) is used with different values for the parameters Ao, A(0) and Amax for the “global” parameter and 

“local” parameter estimation purposes. The values of these parameters used in simulations are specified 

below. 

A0 A(0) Amax 

“Local” Estimator 1 .o .99 .99 

“Global” Estimator .995 .99 .998 

Note that for A0 < 1, the value of A(k) when computed according to (A7), it monotonically increases to 

1 as k -+ 00. In the simulations if A(k0) 2 Amax for some ko, we simply set A(k) = A,, for k 2 ko. 

Considering the estimation of “local” parameters, it is apparent that there is much more uncertainty 

in the phase parameter e(T&+) compared to other parameters (a good prediction of the other parameters is 

available from “global” parameter estimates). This fact was taken into account to marginally improve the 

performance by multiplying the (1, 1) element of the matrix A-1(k)3P(k/k)O’ in (A5) by X(k)/X, with XI 
= min (AI, A(k)). In the simulations A1 is equal to 0.9. 

A diagonal initial covariance matrix Pc(O/ - 1) (G denotes “global”) for the “global” estimation al- 

gorithm is selected with its diagonal elements equal to lo6, lo6, l@, reflecting the initial uncertainty 

about the parameters. The corresponding initial covariances for the local estimations are simply given by 

S ( m T ~ ) P ~ ( m N / m N ) S ( m T ~ )  where S(mTb) is a transformation similar to S(Tb) of (6), and PG(mN/mN) 

denotes the filter error covariance matrix for the ”global” parameter estimator after mN measurements. A 

diagonal Q ( k )  matrix in (A5) is used with all its elements equal to zero except (1, 1) element which is equal 

to 0.5 if k is an integer multiple of N in the global algorithm, or for k = 1 in the “local” algorithm to take 

into account phase noise due to data detection errors. Note that the extent of the “local” algorithms is 

confined to 1 bit of duration and thus the value of X ( k )  is reset to X(0) at the start of each new bit for fast 

convergence. 

Figures 4 7  present the results of typical simulation runs for the case when an unknown constant ac- 

celeration and unknown phase and frequency are introduced and a third order model for the state vector is 
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used. In the following we present results for LjF(kTb-) and y~(kTb+) obtained in step 2 of the algorithm 

along with BOT*+) of step 3. Figures 4 and 5 present the simulation results for the case of 22.8 dB-Hz 

with the unknown acceleration of 50 g. Also, a randomly selected unknown phase of -2.3 rad. along with an 

unknown velocity error of about 25 m/s was included in the simulations. Such an error is expected when the 

algorithm is extended for tracking. In figure 4 we consider the case of no data detection (data bits assumed 

known). As is apparent from figures 4b and c, good estimates of both the acceleration and velocity are 

obtained within a period of about 10 data bits (200 ms). In this period the velocity error is reduced to  about 

0.2 m/s with acceleration error of about 2 m/s2 in various simulation runs. 

In figure 4c, the phase estimation error at the start of bit periods is plotted. Similar results are obtained 

for the phase estimates just before the data transitions a t  time kTb-. From the drift in phase estimates as 

seen in the figure, it is clear that at the low CNR ratio considered here, phase coherence is maintained over 

short periods. However, such coherence is adequate for the differential detection discussed in the publication. 

In the simulation reported, six errors occurred over a period of about 40 bits. This may be compared with a 

DPSK detection (constant frequency) which results in a probability of error P, of about .06 at (PTb/No) of 

6 dB, and with coherent PSK detection (coherent phase) which results in P, of .01 [14]. Here, as the received 

signal frequency is time varying, the probability of error is even higher as may be expected. However, even 

under such a poor detection probability, good estimates of frequency and frequency rate can be achieved as 

I 
I 

shown in figure 5. 

In figure 5b, c, the estimates of velocity and acceleration are plotted for the case when data is detected 

simultaneously with parameter estimation. Compared to figure 4b, c the estimation errors are considerably 

higher. However, in a period of about 200 ms, velocity and acceleration estimation errors reduce to only 

about 1 m/s and 15 m/s2 respectively, which are quite small. 

In figures 6 and 7 we present the estimation errors for the case when the sampling rate is equal to 20 

samples/bit. Keeping the sample SNR (A2/2u2) the same as for figure 1, this corresponds to a (PINO) to 

24.1 dB-Hz. Comparison of figures 4 and 7 shows that the sampling rate does not significantly affect the 

estimation errors. Figure 7 presents the results for the case of 100 g step acceleration. 

! 
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6. CONCLUSIONS 

We have presented a novel simultaneous estimation-detection scheme for the efficient estimation of 

phase, frequency and frequency derivative of a sinusoidal signal which may possibly be phase modulated by 

binary data and is received under noise. The proposed scheme is of a very general nature and can easily be 

adapted to situations other than those considered in the publication. For example, the scheme is equally 

applicable to situations where the data is QPSK on FSK (Frequency Shift Keying) modulated. The proposed 

algorithm is recursive in the number of data bits and within a bit period it is recursive in the number of 

signal samples. In terms of its application to GPS receivers, we observe from simulations, some of which 

have been reported here, that for a PINO of 23-24 dB-Hz, and with a 50-100 g acceleration, the scheme is 

capable of acquiring the velocity with an error of about 1 m/s in a 200 ms period. Thus, the algorithm 

can easily be adapted to  high dynamic tracking situations as well. The most straightforward adaptation is 

simply to restart the algorithm every 200 ms. In fact, since the acceleration does not change by more than 

20 g (even for a 100 g/s jerk) over a 200 ms period, the actual performance could be expected to  be better for 

tracking of 100 g/s jerk than reported here. Results of [q, which also consider data modulated carrier, show 

that an error of the order of 1 m/s is obtained for a PINO of about 30 dB-Hz under similar dynamics. From 

this comparison it is apparent that the algorithm can achieve a very significant improvement of 6 dB over a 

previously proposed scheme based on Fast Fourier Thnsform (FFT) techniques. More extensive simulations 

of the proposed algorithm would provide a more precise measure of such an improvement. 
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APPENDIX 

Denoting by i ( k / j )  the estimate of z ( k )  on the basis of observations up to time j ,  one obtains [ll, 16) 

b Filter State Equations: 

i(k + l / k  + 1) = O i ( k / k )  + M ( k  + l)Y(k + 1) 

v(k + 1) = z ( k  + 1) - h(Z(k + l/k), k + 1) 

Filter Gain: 

M ( k  + 1) = P(k + l/k)hi(i(k + l/k), k + l ) d ( k  + 1) (A31 

Error Covariance Update: 

In (A3) P ( k / j )  denotes the error covariance matrix E [ { z ( k )  - 5 ( k / j ) } { z ( k ) -  Z ( L / j ) } ' ] ,  with a recursive 

update given by 

P(k + 1/k + 1) = P(k  + 1/k) - P(k + l/k)h:a-'(k + l ) [ P ( k  + l/k)h;y 

P ( k  + l/k) = X-'(L)cPP(k/k)cP' + Q ( k )  

o(L + 1) = h,P(k + l/k)h: + R 
I 

A ( k  + 1) = A o A ( k )  4- (1 - Ai)) ; A(k) 5 Amax (A71 

where A ( k )  is the exponential data weight.ing coefficient, A. is some non-zero positive number less than 1, 

and h,  denotes the derivative of the function h.  

t To siniplify the algorithm above for the given signal model, one obtains from (15), 
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-ASin( 8 (k)) h,(i(k/k - l ) ,  k) = 

Substitution of (A8) in (A6) results in 

a(k) A ~ J ' ( L ) P ( L / ~  - i ) ~ ( k )  

Substitution of (A8) and (A9) in (A4) results in 

P(k+l/k+l)  = P(k+l/k)-P(k+l/k)J(k+1)A2[J'(k+l)P(k+1/k)J(~+l)+r]~'J'(k+l)P(k+1/k) (A10) 

The Kalman gain expression and the state update equations can similarly be simplified as 

M ( k  + 1) = A(a(k + 1) + r ) - 'J (k  + l)[Cos(B(k + 1)) - Sin(6(k + l))] ( A l l )  

P ( k  + 1/k + 1) = ( 9 P ( k / k )  + K ( k  + 1) E (k + 1) 

K ( k  + 1) = [A2J'(k + 1)P(k + l/k)J(k + 1) + r]- 'P(k + l/k)AJ(k + 1) 

E (k + 1) = y(k + l)Cos(B(k + 1)) - z (k  + 1)Sin(8(k + 1)) 
(A121 

I 
Equations (A12, (A5) and (A10) then constitute the extended Kalman filter equations for the signal model 

of interest. 
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